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Accomplishments
Major goals of the project

The goal of the Florida Coastal Everglades Long Term Ecological Research (FCE LTER) program is to
understand how climate change and resource management decisions interact with biophysical processes
to modify coastal landscapes. Changes in drivers of freshwater or marine endmembers of karstic coastal
ecosystems — with strong biotic feedbacks of geomorphology, hydrology, and ecosystem processes —
shift the dominance of landscape patterns that determine carbon sequestration and food webs dynamics.
We have observed rapid intrusion of salt water and associated limiting nutrients (phosphorus) into
brackish and freshwater ecosystems driven by increased rates of sea-level rise (Dessu et al. 2018).
Experimental studies are revealing the mechanisms by which saltwater intrusion into freshwater and
brackish wetlands drives rapid loss of stored carbon (Wilson et al. 2018; Charles et al. 2019; Servais et
al. 2020). However, we now have evidence of changes in ecological process attributed to restoration
projects implemented over the last few years. Observed increases in pulsed delivery of fresh and marine
water to this sensitive ecosystem via water management and climate change provides a landscape-scale
template for testing theories of how pulse dynamics may maintain ecosystems in a developing state,
reducing vulnerability to the accelerating press driven by climate change (sea-level rise).

FCE lll research was organized around four goals to reveal the

social-ecological drivers and consequences of a shifting balance FCE Ili
of fresh and marine water supplies to coastal ecosystems (Fig. EXTERNAL DRIVERS
1): (1) Water - assessing how climate change, particularly Global to (" Global to
accelerating sea-level rise, interacts with political conflicts over | | Regional Regional
freshwater distribution; (2) Ecosystem Dynamics - determining Societal [} ~Climate
how the balance of fresh and marine water supplies control NaRivers b
ecosystem structure and functions through the dynamics of /H ( Marine
biogeochemistry, organic matter, primary producers, ™ Wwater Water
consumers, and the rates and pathways of carbon
sequestration; (3) Legacies - characterizing spatiotemporal A B rONaEs
patterns of ecosystem sensitivity to, and legacies of, past climate fécosystem Structurew
variability and land/water-use change, and; (4) Scenarios - L] & Functions
modeling how future policy scenarios of freshwater distribution ‘ e

" . . ocietal Values
may reduce vulnerability to rapid climate change. | *L & Decisions 1
We addressed these goals through continued biophysical data Past — — Futury
collection along the Shark River Slough (SRS) and Taylor
Slough/Panhandle transects in Everglades National Park with a FIGURE 1. CONCEPTUAL FRAMEWORK

focus on dynamics in the oligohaline ecotone, while we expanded  GuipING FCE Ill RESEARCH

our socio-hydrological research to extend beyond the boundaries

of the Park. We expanded our cross-system eddy flux tower network, adding a site in the dwarf
mangrove forest (TS/Ph-7) and seagrass ecosystem of Florida Bay (TS/Ph-9). Experimental research
focused on mesocosm-scale manipulations of P concentration and salinity, to examine responses on
spatiotemporal scales that can guide interpretation of responses to the landscape-level experiment
provided by Everglades restoration. We focused synthesis efforts on scenario-driven modeling and the
production of our synthesis book (Childers et al. 2019).



Major Activities

Water: We maintained continuous measurements of groundwater and surface water levels, temperature,
salinity, and chemistry in the oligohaline ecotone of both sloughs. Rainfall and ET from meteorological
stations were combined with surface water inflows, outflows, and water levels measured across ENP into
a water balance. Wetland Interferometric Synthetic Aperture Radar was used to provide high spatial-
resolution water level change maps over a greater region of the oligohaline ecotone of SRS by comparing
pixel-by-pixel observations over time. Using a multi-methodological approach, we interviewed local
residents, recreationalists, and resource managers and analyzed archival data and restoration planning
documents to understand the management (institutional) and local perspectives that create connections
and disconnections of water inflow structures and eventually to the oligohaline ecotone.

Ecosystem Dynamics: We produced an integrated carbon budget continuous estimates of net
ecosystem exchange from our flux towers, regular above and belowground net primary productivity
values, organic matter accretion from sediment elevation and paleoecological studies, dissolved inorganic
carbon fluxes across the land-water-air continuum, and measurements of dissolved and particulate
carbon tidal fluxes (Troxler et al. 2013). This framework was newly applied in the dwarf mangrove system
in TS/Ph, and comparisons between the SRS and TS/Ph datasets will enable rigorous tests of this
hypothesis. We coordinated a large-scale initiative to determine landscape variability in the patterns and
controls on carbon budget components, including the expansion of our eddy flux network to include a
tower in the dwarf mangrove forest of TS/Ph-7 and underwater Oz-based gas flux in Florida Bay. We
used the framework described above to calculate and cross-validate carbon cycling measurements from
plot-based and tower-based methods.

e Biogeochemistry: We used a suite of controlled experiments at our mesocosm facility to understand
how P, salinity, and water residence time and depth affect microbially-mediated carbon and nutrient
cycling along the TS/Ph and SRS transects. Four treatments were assigned across 24 mesocosms,
including salinity and P controls, and salinity-enhanced, P-enhanced, and combined salinity and P
treatments. We measured treatment effects on soil CO, and CHa efflux (continuous), bacterial
production, redox conditions, total and dissolved nitrogen (N), P, organic carbon concentrations, and
the optical properties of water (weekly), soil bulk density, total C, N and phosphorus concentrations,
microbial activity and composition (by molecular fingerprinting), and leaf and root decomposition rates
(Wilson et al. 2018a, Charles et al. 2019, Servais et al. 2020). We examined bacterial productivity
along FCE transects relative to biogeochemical drivers (Kominoski et al. 2020, Lee et al., unpublished
data).

Primary Producers: We assessed the effects of salinity, water residence time, and P availability on
productivity of sawgrass, mangrove saplings, and periphyton in collaboration with biogeochemical
cycling studies in the mesocosm experiment described above. We quantified changes in aboveground
and belowground biomass and net primary production of sawgrass and mangroves using an allometric
approach and root in-growth cores, respectively, and of periphyton net primary production using
artificial substrates (Wilson et al. 2019, Mazzei et al. 2020). Changes in abiotic drivers including leaf
and periphyton P, N and C, porewater salinity, hydrogen sulfide, and soil redox potential were
assessed (Servais et al. 2020).

Organic Matter: We assessed estuarine organic matter inputs, mixing, and transport dynamics along
salinity transects in each estuary in the wet and dry season (Regier & Jaffe 2016). We determined
dissolved organic matter quality and exchange dynamics between ground and surface water in Shark
River, Taylor River, and Florida Bay (Regier et al. 2016). In addition to molecular-level
characterizations, stable carbon isotope determinations of dissolved organic and inorganic and
particulate organic carbon provided carbon source identification and degradation dynamics (Ya et al.



2015). Organic matter degradation rates were measured in laboratory photo- and biodegradation
incubations of samples from estuarine transects taken during the wet and dry seasons.

Consumers: We conducted experiments in Everglades wetlands to determine how energy-flow
pathways are changed by freshwater delivery, particularly if the delivery is associated with P-
enrichment. We manipulated nutrients and key consumers using established in-situ field enclosures to
test how freshwater sources and predator behaviors control markers of food assimilation (stable
isotopes of C and N, fatty acids), delineating predictions based on the presence of key microbial
energy-flow routes in oligotrophic Everglades wetlands that are changed when P is enriched (Abbey-
Lee et al. 2013). Our second line of work evaluated microbial energy flow into estuarine food webs,
relying on movement studies to identify wide ranging estuarine consumers that travel between
marshes, the ecotone, and downstream marine areas. After identifying foraging and “refuging” sites
where consumers feed and travel to, we evaluated isotopic and fatty acid signatures of detritus, algae,
macroinvertebrates, and mesoconsumers in an effort to delineate linkages to the wide-ranging top
predators (i.e., alligators and large fish) (Eggenberger et al. 2019). To determine variability in potential
contributions of top predators to community dynamics and nutrient cycling, we maintained quarterly
sampling of bull shark abundance and bi-annual sampling of alligator abundance, diets, and body
condition in the ecotone region in relation to freshwater flow, salinity, dissolved oxygen and nutrient
concentrations, and other continuous FCE data (Rosenblatt et al. 2015; Matich et al. 2017).

Legacies: We extended our land-use change work to the full Everglades landscape, analyzing the past
four decades of landscape change across the urban, suburban, and exurban/agricultural gradients using
aerial photographs and multi-resolution satellite platforms (GeoEye, Landsat, MODIS) (Onsted &
Chowdhury 2014). We generated remote-sensing based vegetation indices to explore drivers of
directional, cyclical, and stochastic change on salinity, nutrient concentrations, and carbon storage.
Statistical analyses and modeling were used to test relationships among indices of land cover, landscape
structure, and climate-hydrological indicators at varied spatial scales to investigate boundary dynamics
and neighborhood effects.

Scenarios: We coordinated meetings of science experts and stakeholders to balance the interplay
between tightly- and loosely- linked scenarios, creating common (transdisciplinary) storylines while
allowing full independence to discipline-specific modelers, and formulating bridges to encourage cross-
discipline or cross-scale comparisons. We identified a manageable number of plausible timelines and
climatic and water management conditions to drive interactive socio-ecological models. These model
domains range from site-specific (points) to spatially extensive models (>10,000 km?) with temporal
domains ranging from weeks to decades (Flower et al. 2017a). Model outcomes were visualized using
GIS-based mapping tools (including video) developed through our public-private partnerships and used to
evaluate the economic consequences of scenario options to ecosystem services, including freshwater
supply, flood protection, and fish and wading bird abundances (as they apply to recreational use) (Wetzel
et al. 2017).

Specific Objectives

Water: Objectives were to determine how climate change and sea-level rise interact with water
management practices to control hydrologic conditions in the oligohaline ecotone. We expected that
climate processes of rainfall and evapotranspiration along with sea-level rise would continue to be the
dominant drivers of water availability across the Everglades landscape, but that the balance between
regional water demand and restoration efforts will fine tune the position of the oligohaline ecotone, and its
surface and groundwater quality. We also planned to examine the social, institutional, and economic
processes that have produced current hydrologic disconnections within the broader watershed and its
ultimate impact on the oligohaline ecotone.



Ecosystem Dynamics: Objectives were to determine how changing freshwater inflows, tidal and storm
cycles, and climate patterns affect the magnitude, rates, and pathways of carbon sequestration, loss,
storage, and transport across the land-water continuum. We planned to integrate carbon transport and
loss processes into FCE carbon budgets, expecting to find that the temporal variability in the carbon
balance along the FCE transect will reflect the seasonally-adjusted plant eco-physiological and
ecosystem respiratory responses to the variable influences of marine and freshwater supplies defined by
changes in surface and pore-water conductivity, water residence time, and tidal energy. We also
expected that landscape-scale patterns of change in the carbon balance will be determined by the
mitigating or magnifying effects of water management and rainfall variability on the impacts of sea-level
rise.

¢ Biogeochemistry: Objectives were to determine how the balance of fresh and marine water supply to
the oligohaline ecotone influence microbially-mediated carbon and nutrient cycling in soils and water.
We expected that factors that increase salinity and phosphorus supply from marine sources would
increase microbially-mediated rates of carbon efflux and transport, but only if water depth and
residence time remain unchanged. We also expected that bacterial growth efficiency will: 1) increase
with bioavailability of dissolved organic carbon determined by its source; 2) increase with additions of
inorganic phosphorus relative to organic phosphorus; and 3) be related to changes in salinity,
independent of changes in dissolved organic carbon source.

Primary Producers: Objectives were to determine how the balance of fresh and marine water supply
to the oligohaline ecotone influence the composition, distribution, and productivity of primary
producers. We expect that marine delivery of phosphorus and salinity will be amplified under scenarios
where freshwater delivery is not restored, resulting in mangrove transgression and decline in sawgrass
aboveground net primary production in the oligohaline ecotone. By examining large-scale patterns of
plant community composition and production in light of large-scale changes in hydro-dynamics, we
hoped to reveal the relevance of the results of mechanistic studies to interpreting and predicting long-
term and landscape-scale dynamics in the Everglades ecotone.

Organic Matter: Objectives were to determine how surface water residence times, phosphorus
availability, and salinity interact to affect organic matter quality, abiotic and biotic processing, and
exchange between freshwater, ecotone, and marine environments. We expected an increased
importance of marine supplies of organic matter to the ecotone, particularly from the groundwater,
when freshwater delivery is depressed, and increased processing to more refractory forms when water
residence time is extended. We also expected that carbon fluxes from water and soils will be
determined by the magnitude of hydrodynamic pulses (tides, freshwater flows, storms) and the rates of
organic matter degradation driven by longer-term changes in the balance of water sources.

Consumers: Objectives were to determine how sea-level rise will interact with changes in freshwater
inflows to modify detrital food webs and the spatial scale of consumer-mediated habitat linkages. We
expected that the freshwater inputs would enhance the importance of microbial loops and detritus in
the food webs of Everglades freshwater marshes and mangrove estuaries, as long as inputs are not
enriched in phosphorus. Behavioral sensitivity to seasonal changes in habitat access and suitability
caused us to expect that the strength and direction of consumer subsidies to the ecotone would also
shift with changes in the balance of freshwater and marine water supplies to the ecotone.

Legacies: Objectives were to determine how the legacies of wetland conversion to urban and agricultural
land uses and resulting shifts in water demand/management across the Everglades watershed have
changed the sensitivity of the coastal zone to freshwater restoration in the face of sea-level rise. We
hypothesized that periods and locations of land-use and/or climate-driven changes in available freshwater
correlate (perhaps with lags, step-functions or nonlinearities) with the migration of the oligohaline ecotone
along the TS/Ph and SRS transects. We expected that legacies of changing freshwater inflows to the
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oligohaline ecotone have influenced sensitivity to the balance of fresh and marine water supplies across
the landscape.

Scenarios: Objectives were to determine what scenario of water distribution and climate change will
maximize socio-economic and environmental sustainability of a future FCE. We hypothesized that
scenarios that maximize freshwater inflow to the Everglades will sustain distinctive biophysical features
and dynamics of the oligohaline ecotone in the face of climate change. We also anticipated that
scenarios that maximize the sustainability of ecosystem services provided by the marsh-mangrove
ecotone will also improve freshwater sustainability in the South Florida Urban Gradient.

Significant Results

Water: Sea level rose 3x faster than the prior decade (Haigh et al. 2014, Fig. 2) and is highest in the wet
season (Dessu et al. 2018). Wet-season rainfall increased by 29 cm between 1995-2016 (Abiy et al.
2019b). Freshwater inflows currently only account for 9-19% of annual water budgets (Sandoval et al.
2016), but new upstream infrastructure (bridges, retention structures) is increasing water levels in
freshwater marshes. Agricultural best management practices are reducing water use (Yoder 2019),
required to meet the demands of a growing population (Onsted & Roy Chowdhury 2014; Aldwaik et al.
2015). Everglades restoration is now allowing P inflows to meet the mandated maximum of 10 ug TP L
(Rivera-Monroy et al. 2019a). The 2017 authorization of a structures to store and clean water will provide
more seasonal freshwater pulses to the FCE, reducing saltwater intrusion into the marsh-mangrove
ecotone (Dessu et al. 2018) and the region’s freshwater supply, the Biscayne Aquifer (Blanco et al. 2013).
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FIGURE 2. CLIMATE DRIVERS AND PROJECTIONS OF PRESSES & PULSES. (a) Mean annual rainfall, sea level, and hurricanes
(9) over the past 50 years; (b) projections for sea-level and storm intensity; (c) seasonality in mean rainfall, sea-level, and
evapotranspiration (ET) (arrows indicate direction of projected change); (d) changes in water level in SRS and TS/Ph with
passage of Hurricane Irma (Sept 2017); (e) a completed SRS bridge - one of many projects restoring freshwater pulses to
FCE; (f) modeled monthly inflows to 1.5 km?2 subregions of SRS and TS/Ph for a year with average rainfall (1982) using
the Everglades Landscape Model without (base) and with full restoration (note scale difference for TS/Ph on right y-axis).

Ecosystem Dynamics: Experiments have shown a reduction in sawgrass root production with salt
exposure that shifts peat marshes from carbon sinks to sources (Wilson et al. 2018a; Servais et al. 2019),
resulting in losses of soil elevation and carbon stocks (Charles et al. 2019) — analogous to the spatially
patchy and abrupt collapse of peat soils observed on the FCE landscape and elsewhere (Tully et al.
2019). Subsidy-stress experiments, designed to decouple the influences of P and salinity, suggest that
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plants exposed to saltwater can increase CO, uptake Fresh Fresh+P | +Seawater | +Seawater +P
in the presence of increased P (Fig. 3). Long-term data
from our freshwater marsh eddy flux towers illustrate
how seasonal inundation duration determines whether
marshes are a carbon source or sink, controlled mainly
by ecosystem respiration (Malone et al. 2013; Zhao et
al. 2019). The formation and dissolution of carbonate
minerals that comprise the inorganic fraction of FCE
soils have implications for the net ecosystem carbon
balance (Howard et al. 2018).

e Biogeochemistry: During the dry season and . |
extended droughts, TP is concentrated in marsh FIGURE 3. FRESHWATER MARSH RESPONSE TO

surface water (Davis et al. 2018). Where marshes SALTWATER INTRUSION from manipulations of
dry completely, organic matter mineralization drives ~ phosphorus (+ 15 ymol P d') and seawater (9 ppt
P release after reflooding (Sola et al. 2018). NaCl). Responses include changes in carbon dioxide

flux (blue and red arrows, pmol CO, m2s), biomass
of above and belowground vegetation (green and
brown numbers, respectively, in g m?2, respectively)
and soil elevation gain or loss (arrows, in cm).

Downstream, wet-season surface water TP and
DOC concentrations vary with the extent of tidal
and storm-driven marine supplies (Figs. 4, 5), while
in the dry season, groundwater intrusion through
limestone mobilizes P to the root zone (Flower et al. 2017b,c). These marine pulses leave legacies in
soils and water that influence long-term plant and microbial productivity and composition (Mckay et al.
2017, Castafieda-Moya et al. 2020; Kominoski et al. 2020).
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e Primary Producers: In freshwater marshes, sawgrass productivity is equal to that of periphyton mats
(Marazzi & Gaiser 2018), which are abruptly lost upon exposure to TP exceeding 10 ug L (Gaiser et
al. 2015a). Where freshwater restoration is increasing wet-season water depth, we are observing
dominance transitions from sawgrass to a deeper-water slough species (Eleocharis cellulosa). In the
marsh-mangrove ecotone, rapid declines in periphyton biomass and sawgrass productivity are
occurring where salinity exceeds 5-10 and 10-20 ppt, respectively (Fig. 6; Troxler et al. 2014; Mazzei
& Gaiser 2018). Declines in sawgrass productivity are less pronounced where plant roots can access
P desorbed or dissolved from saltwater-exposed carbonate sediments or rock (Liu et al. 2014; Flower
et al. 2017b). Mangrove forests are also stimulated by P but stressed by salt, such that every 10 ppt
increase in salinity results in a 5% decline in production (Barr et al. 2013; Castafieda-Moya et al.
2013).
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FIGURE 6. FRESHWATER MARSH PRODUCTIVITY. Long-term trends in the number of days with measurable salinity at SRS 3
and TS/Ph 3 (green bars), and trends in mean (+ standard error) of sawgrass (Cladium jamaicense) Annual Net Primary
Productivity (ANPP) at freshwater SRS and TS/Ph sites (b/ue lines), with significant negative relationship to salinity days
at SRS 3 and TS/Ph 3 (green lines) [recent declines at TS/Ph 1 and 2 are related to water level increases from
freshwater restoration].

¢ Organic Matter: We have been at the forefront of advancing methodologies for tracing the sources
and fate of DOC in aquatic ecosystems (Jaffé et al. 2014), showing that most DOC in tidal rivers is
freshwater-derived and is decreasing over time with the loss of upstream carbon sources due to
decades of drying and oxidation (Cawley et al. 2014; Regier et al. 2016). Only ~10% of the mangrove-
derived carbon is transported by tidal drainages in organic (mainly particulate) form (Regier & Jaffé
2016; Chen & Jaffé 2016), while the rest is transported downstream as dissolved inorganic carbon
(Troxler et al. 2015).

e Consumers: In freshwater marshes, periphyton mats are the primary source of carbon for consumers
(Williams & Trexler 2006; Belicka et al. 2012). The degree of P limitation is negatively correlated with
edibility of the autotrophic bacteria in periphyton, which is positively correlated with mesoconsumer
density and biomass (Sargeant et al. 2011; Trexler et al. 2015). At the coast, sharks, alligators, and
piscivorous fishes show a strong reliance on marsh prey production, which is regulated by the severity
of marsh drying (Boucek & Rehage 2013; Boucek et al. 2016a). This prey subsidy is a strong driver of
consumer distribution, as consumers move from marine to freshwater marsh ecosystems tracking
seasonally-displaced marsh prey (Matich & Heithaus 2014; Griffin et al. 2018), partitioning resources
and space differently among individuals and taxa (Rosenblatt et al. 2015; Matich et al. 2017). Along
with freshwater marsh prey pulses, extreme events (cold spells, hurricanes, droughts) drive long-term
prey and consumer abundances (Boucek & Rehage 2014, Boucek et al. 2016b) and movements
(Boucek et al. 2017; Strickland et al. 2019; Massie et al. 2019; Fig. 7).
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Legacies: Florida Bay shows high rates of net primary productivity, but burial rates of autochthonous
inorganic mineral carbon are 4-10x higher than burial rates of organic carbon (Howard et al. 2018). The
pace of interior-ward movement of SRS mangroves over the last century is linked to the historic rate of
sea-level rise (Yao & Liu 2017; Fig. 8), but decadal accretion rates (-1.5-4.7 mm y1) of TS/Ph scrub



mangroves are much lower than the

current local sea-level rise rate (9 mmy?).  ~ 2000 7= SRS 4
Sites with the highest accretion rates (SRS N'>~ 1600 ---
mouth) contained 5 cm of inorganic carbon E P SRS 5
from Hurricane Wilma (Oct. 2005) and 4 204 AN SN Y | T
cm from Hurricane Irma (Sept. 2017) @ ®SRS 6
equivalent to 50 and 40 years of organic £ 800 4
carbon accretion, respectively (Breithaupt =
et al. 2019). These mineral storm deposits < 400 1
contained double the P content of 0 100
mangrove peat soils (Castafieda-Moya et £ i f;D
al. 2020), which is gradually sequestered E— 757 2
into plant biomass and leached out of soils S %07 -5 o
and pulsed upstream with tides (Davis et o 27 2
al. 2019; Kominoski et al. 2020). This P g 9 =
subsidy induced rapid (<5 years) forest -0 =
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recovery in areas where canopy defoliation
was >90% (Danielson et al. 2017). As leaf FIGURE 8. MANGROVE PRODUCTION AND ACCRETION REFLECT
turnover recovered over time, foliar STORM-SURGE RESOURCE PULSES FROM HURRICANES (§)
residence time decreased to pre-Wilma WILMA (2005) AND IRMA (20'17'). (a) Annugl mean litterfall (with
values — a relationship that could be used standard errors) show defoliation and ra_pld regrowth, fueled
by pulses of (b) porewater soluble reactive phosphorus (SRP
as a proxy of canopy recovery and - bars with standard errors) from P-rich sediments delivered
resilience in studies across mangrove from the Gulf of Mexico that also increased accretion rates
ecotypes and coastal settings (Rivera- (black lines with slope of linear regression).
Monroy et al. 2019b).

Scenarios: We modeled ecosystem responses to sea-level rise (0.5 m) interacting with climate change
(+1.5 °C, +7% evapotranspiration, and +10% rainfall), predicting that mangrove forests would migrate up
to 15 km inland and freshwater habitat area would decrease by more than 25% by 2060 (Flower et al.
2017a). Increased rainfall provided significant benefits to the salinity regime (Fig. 9), providing a more
gradual adjustment for at-risk flora and fauna — a benefit that, when coupled with freshwater restoration,
increase the capacity for mangrove
establishment and forest development to -Rainfall Baseline +Rainfall
the interior (Flower et al. 2019). This work (+1.5°C, +7% ET, (2010 climate) (+1.5°C, +7% ET,

: +0.5 m SLR, - 10% RF) +0.5 m SLR, + 10% RF)
has allowed key stakeholders to recognize e ) :
that coastal ecosystems contain large :
stores of carbon in vegetation and soils of
significant value ($2-3.4 billion in social
cost of mangrove wetlands; Jerath et al.

2016; Wetzel et al. 2017) that are at risk of FIGURE 9. EVERGLADES LANDSCAPE MODEL R E5
being released to the atmosphere with (ELM) SiMULATIONS of daily mean surface g N
excessive salinity, extreme drought, and water salinity for three climate scenarios of = B
nutrient enrichment (Fourqurean et al. temperature (°C), evapotranspiration (ET), and & J (1)

2012a,b; Breithaupt et al. 2014; Suarez- sea-level rise (SLR), and rainfall (+/-RF).
Abelanda et al. 2014).



Key outcomes or Other achievements

During FCE 111 (2013-2018), we produced 348 works that acknowledge FCE, consisting of 272 journal
articles, 1 book, 25 book chapters, 5 thematic issues of journals, 32 dissertations, and 18 theses. We
published 7 papers in broad, high-impact journals (impact factor >10, e.g., Science, Nature, PNAS).
Extramural funding leveraged for FCE research averaged 7 times the NSF base. We developed and
continued 176 data packages that are searchable by LTER core area, fully compatible with the LTER
Network Information System, and discoverable on the LTER Environmental Data Initiative (EDI) data
portal and DataOne (see Data Management Plan for details). Major outcomes include:

Water: By coupling long-term hydrologic and social science studies, FCE research has quantified the
rates and pathways of accelerated saltwater intrusion in coastal wetlands, while also identifying
successful pathways toward resolving restoration conflicts and achieving optimal scenarios for water
quantity, flow, and quality. Studies of the drivers of climate variability continue to underscore the
importance of global-atmospheric interactions beyond the FCE boundaries.

Ecosystem Dynamics: Saltwater intrusion is increasing salinity and P in the marsh-mangrove ecotone,
reducing sawgrass production but increasing connectivity of marine and freshwater food webs.
Freshwater marshes exposed to salt can experience abrupt losses of vegetation and stored carbon — a
pattern that may be reversed with freshwater restoration. The shifting balance of fresh and marine water
supplies drives spatiotemporal variability in net ecosystem carbon balance along a freshwater-marine
gradient through its influence on P, salinity, and duration of inundation (Troxler et al. 2013). Variability in
the magnitude of fresh and marine water delivery along the FCE gradients drives dynamics of water
biogeochemistry and organic matter (Davis et al. 2018; Kominoski et al. 2020). Our studies of primary
producers have quantified how spatiotemporal variability in marine and freshwater supplies control
patterns and trends in composition, distribution, biomass, and net primary productivity of coastal
vegetation (Herbert & Fourqurean 2009; Troxler et al. 2014; Danielson et al. 2017; Marazzi et al. 2019).
Our research on consumers has shown how salinity, P availability, and inundation change the role of
detritus in food webs, the strength of trophic interactions, and the spatial scale of consumer-mediated
habitat linkages (Fig. 10).

Legacies: The FCE paired transect design has enabled robust documentation of how disturbance
legacies determine ecosystem trajectories and suggest that vulnerability to saltwater intrusion in coastal
wetlands may be reduced by freshwater and marine pulses. Our paleoecological research shows that
tidal and storm-driven marine P subsidies have fueled the long-term inland migration of mangroves,
offsetting negative effects of saltwater intrusion on organic carbon burial over the last century (Breithaupt
et al. 2012).

Scenarios: Taking advantage of episodic “natural” disturbances and experiments, we are parameterizing
models to evaluate the limits of primary producers to the stressor of saltwater intrusion, constructing new
models for relating drivers to responses, evaluating ecosystem resilience and recovery trajectories to
disturbances, and informing scenarios that are helping us to project the future of the FCE.

In summary, the Everglades is a complex social-ecological system with emergent properties resulting
from a long history of conflicts over water use, reduced freshwater inflows, and increased sea-level rise
and storms (Gaiser et al. 2015b; Childers et al. 2019). Saltwater intrusion has caused abrupt release of
COzfrom marshes to the atmosphere via collapse of peat soils. In the absence of sufficient fresh water,
catastrophic losses of soil elevation will hinder the landward migration of mangroves by reducing seedling
establishment in deeper, sulfide-rich water (Chambers et al. 2016; Troxler et al. 2019). A consequence of
soil elevation loss is reduced social-ecological resilience to sea-level rise and decreased ecosystem
service values. Freshwater restoration now provides a manipulation at an unprecedented scale to
determine whether the return of freshwater pulses interacts with increasing marine resource pulsing to
reverse these trends and preserve core ecological features of coastal wetland ecosystems that enhance
their ability to persist as sea-level rise accelerates.
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Opportunities for training and professional development

FCE has a very active education and outreach program that promotes the professional development of
the majority-minority populations of FIU and our K-12 schools. Our Schoolyard program focuses primarily
on Miami-Dade County Public Schools by engaging a diverse population of pre-professional-service
teachers in Science, Technology, Engineering, and Math (STEM) disciplines, and our community partners
to increase Everglades literacy. Since 2013, our scientists have mentored 179 K-12 students and 4
teachers in our Research Experience Program. Teachers generate Data Nuggets available online and in
use within and outside the State of Florida. We provided professional development to 114 teachers from
70 schools, delivered 73 K-12 presentations, and high school students have presented 17 posters
receiving 42 awards (26 local, 12 state, 1 national, and 3 international). Our children’s book has been
placed in 488 K-8 schools and 50 public libraries, and our Predator Tracker and Alligators of Shark River
apps are used globally. Since 2013, 247 undergraduates from 26 universities in 9 U.S. states and 3 other
countries have worked with FCE researchers. This program was formalized in 2019 through an NSF
Research Experiences for Undergraduates (REU) site grant at FIU focused on coastal ecosystems. FCE
graduate students have always been very active participants in the FCE and LTER Network (see
Romolini et al. 2013). They co-produce science as a result of mentoring by both academic and agency
scientists and are engaged in all aspects of the FCE program, including writing proposals and leading
authorship of 53% of our publications, mentoring undergraduate and high school students, and engaging
in public participatory science projects.

Communicating results to communities of interest

Since 2013, 92 FCE researchers have participated in over 700 media events that include 32 local,
national and international news agencies. Our findings have been shared with the public through Miami's
Frost Science Museum, the Ft. Lauderdale Museum of Discovery and Science, coverage in 51
television/radio segments (including episodes of Changing Sea, Shark Week, and Ocean Mysteries), our
Diatom of the Month blog that is now managed internationally, and over 337 outreach events and more
than 189 public presentations. Our collaboration with the Tropical Botanic Artists has led to 24 art
exhibitions with over 80 paintings displayed at 14 venues across South Florida and three national
exhibits. During the COP21 Paris Talks in 2015, FCE Artist in Residence, Xavier Cortada launched the
first annual exhibit at Art Basel Miami consisting of discussions addressing sea-level rise, global climate
change, and biodiversity loss and featuring works created at FCE, H.J. Andrews, and Hubbard Brook
LTERs. FCE scientists also express data through music with three compositions available on YouTube.

Products

Publications

Books
Childers, D.L., E.E. Gaiser, and L.A. Ogden. 2019. The Coastal Everglades: The Dynamics of Social-
Ecological Transformation in the South Florida Landscape. Oxford University Press.

Book Chapters

Childers, D.L., E.E. Gaiser, and L.A. Ogden. 2019. Chapter 1, in Childers, D.L., E.E. Gaiser and L.A.
Ogden (eds.) The Coastal Everglades: The Dynamics of Social-Ecological Transformation in the
South Florida Landscape. Oxford University Press.
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Childers, D.L., E.E. Gaiser, and L.A. Ogden. 2019. Preface, in Childers, D.L., E.E. Gaiser and L.A. Ogden
(eds.) The Coastal Everglades: The Dynamics of Social-Ecological Transformation in the South
Florida Landscape. Oxford University Press.

Davis, S.E., E. Castafieda-Moya, R. Boucek, R.M. Chambers, L. Collado-Vides, H.C. Fitz, J.D. Fuentes,
E.E. Gaiser, M.R. Heithaus, J.S. Rehage, V.H. Rivera-Monroy, J.P. Sah, F.H. Sklar, and T. Troxler.
2019. Chapter 7: Exogenous Drivers - What has Disturbance Taught Us?, in Childers, D.L., E.E.
Gaiser and L.A. Ogden (eds.) The Coastal Everglades: The Dynamics of Social-Ecological
Transformation in the South Florida Landscape. Oxford University Press.

Gaiser, E.E., L.A. Ogden, D.L. Childers, and C. Hopkinson. 2019. Chapter 9: Re-Imagining Ecology
through an Everglades Lens, in Childers, D.L., E.E. Gaiser and L.A. Ogden (eds.) The Coastal
Everglades: The Dynamics of Social-Ecological Transformation in the South Florida Landscape.
Oxford University Press.

Kennedy, H., J.W. Fourgurean, and S. Papadimitriou. 2018. The Calcium Carbonate Cycle in Seagrass
Ecosystems, in Windham-Myers, L., S. Crooks and T. Troxler (eds.) The State of Coastal Wetland
Carbon Science, Practice and Policy. CRC Press:Boca Raton, Florida.

Kominoski, J., J.S. Rehage, W.T. Anderson, R. Boucek, H.O. Briceno, M.R. Bush, T.W. Dreschel, M.R.
Heithaus, R. Jaffe, L. Larsen, P. Matich, C. McVoy, A.E. Rosenblatt, and T. Troxler. 2019. Chapter 4:
Ecosystem Fragmentation and Connectivity - Legacies and Future Implications of a Restored
Everglades, in Childers, D.L., E.E. Gaiser and L.A. Ogden (eds.) The Coastal Everglades: The
Dynamics of Social-Ecological Transformation in the South Florida Landscape. Oxford University
Press.

Ogden, L.A., J.C. Trexler, D.L. Childers, E.E. Gaiser, and K.Z.S. Schwartz. 2019. Chapter 2: The
Everglades as Icon, in Childers, D.L., E.E. Gaiser and L.A. Ogden (eds.) The Coastal Everglades:
The Dynamics of Social-Ecological Transformation in the South Florida Landscape. Oxford University
Press.

Price, R.M., K.Z.S. Schwartz, W.T. Anderson, R. Boucek, H.O. Briceno, M.l. Cook, H.C. Fitz, M.R.
Heithaus, J. Onsted, J.S. Rehage, V.H. Rivera-Monroy, R. Roy Chowdhury, and A.K. Saha. 2019.
Chapter 3: Water, Sustainability, and Survival, in Childers, D.L., E.E. Gaiser and L.A. Ogden (eds.)
The Coastal Everglades: The Dynamics of Social-Ecological Transformation in the South Florida
Landscape. Oxford University Press.

Rivera-Monroy, V.H., J. Cattelino, J. Wozniak, K.Z.S. Schwartz, G.B. Noe, E. Castafieda-Moya, G. Koch,
J.N. Boyer, and S.E. Davis. 2019. Chapter 5: The Life of P: A Biogeochemical and Sociopolitical
Challenge in the Everglades, in Childers, D.L., E.E. Gaiser and L.A. Ogden (eds.) The Coastal
Everglades: The Dynamics of Social-Ecological Transformation in the South Florida Landscape.
Oxford University Press.

Sklar, F.H., J.F. Meeder, T. Troxler, T.W. Dreschel, S.E. Davis, and P.L. Ruiz. 2019. Chapter 16 - The
Everglades: At the Forefront of Transition, pp. 277-292 in Wolanski, E., J.W. Day, M. Elliott and R.
Ramachandran (eds.) Coasts and Estuaries: The Future. Elsevier.

Sklar, F.H., J.M. Beerens, L.A. Brandt, C. Coronado-Molina, S.E. Davis, T.A. Frankovich, C.J. Madden, A.
Mclean, J.C. Trexler, and W. Wilcox. 2019. Chapter 8: Back to the Future - Rebuilding the
Everglades, in Childers, D.L., E.E. Gaiser and L.A. Ogden (eds.) The Coastal Everglades: The
Dynamics of Social-Ecological Transformation in the South Florida Landscape. Oxford University
Press.

Troxler, T., G. Starr, J.N. Boyer, J.D. Fuentes, R. Jaffe, S.L. Malone, J.G. Barr, S.E. Davis, L. Collado-
Vides, J.L. Breithaupt, A.K. Saha, R.M. Chambers, C.J. Madden, J.M. Smoak, J.W. Fourqurean, G.
Koch, J. Kominoski, L.J. Scinto, S. Oberbauer, V.H. Rivera-Monroy, E. Castafieda-Moya, N.O.
Schulte, S.P. Charles, J.H. Richards, D.T. Rudnick, and K.R.T. Whelan. 2019. Chapter 6: Carbon
Cycles in the Florida Coastal Everglades Social-Ecological System across Scales, in Childers, D.L.,
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E.E. Gaiser and L.A. Ogden (eds.) The Coastal Everglades: The Dynamics of Social-Ecological
Transformation in the South Florida Landscape. Oxford University Press.

Uchida, E., V.H. Rivera-Monroy, S.A. Ates, E. Castafieda-Moya, A. Gold, T. Guilfoos, M.F. Hernandez, R.
Lokina, M.M. Mangora, S.R. Midway, C. McNally, M.J. Polito, M. Robertson, R.V. Rohli, H. Uchida, L.
West, and X. Zhao. 2019. Collaborative Research Across Boundaries: Mangrove Ecosystem Services
and Poverty Traps as a Coupled Natural-Human System, pp. 115-152 in Perz, S.G. (eds.)
Collaboration Across Boundaries for Social-Ecological Systems Science. Palgrave Macmillan:Cham.

Journal Articles
All publications referenced in this report are available in the References section as well as the NSF
publication repository.

Dissertations and Theses

Master’s Theses

Eggenberger, Cody. 2019. Coupling telemetry and stable isotope techniques to unravel movement:
Snook habitat use across variable nutrient environments. Master's thesis, Florida International
University.

Massa, Eric. 2019. Effects of phosphorous on benthic diatom assemblage network structure. Master's
thesis, Florida International University.

Ontkos, Alex. 2018. Habitat use of three abundant predatory fish species in the freshwater marshes of the
Florida Everglades. Master's thesis, Florida International University.

Tasci, Yasemin. 2019. Modeled affinity constants for phosphorus adsorption and desorption due to
saltwater intrusion. Master's thesis, University of South Florida.

Websites

Florida Coastal Everglades LTER Program Website

https://fcelter.fiu.edu/

The Florida Coastal Everglades LTER Program Website provides information about FCE research, data,
publications, personnel, education & outreach activities, and the FCE Student Organization.

Coastal Angler Science Team (CAST) Website

http://cast.fiu.edu/

The Coastal Angler Science Team (CAST) Website, created by FCE graduate student Jessica Lee,
provides information about how researchers and anglers are working together to collect data on important
recreational fish species in Rookery Branch and Tarpon Bay in the Everglades and invites anglers to
participate in this project.

Predator Tracker

http://tracking.fiu.edu/

The Predator Tracker website has information about the Predator Tracker application and a link to
download the application. Predator Tracker is a stand alone application based on a kiosk at the Museum
of Discovery and Science in Ft. Lauderdale. The application allows one to learn how researchers at
Florida International University track and study big predators in the Shark River Estuary in Everglades
National Park and explore their predator tracking data.

Wading Through Research

http://floridacoastaleverglades.blogspot.com/

A blog created by FCE graduate students which focuses on the experiences of graduate students
conducting research in the Everglades.
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https://digitalcommons.fiu.edu/etd/3873/
https://digitalcommons.fiu.edu/etd/3873/
https://search.proquest.com/docview/2245998120?accountid=10901
https://search.proquest.com/docview/2245998120?accountid=10901
https://fcelter.fiu.edu/
http://cast.fiu.edu/
http://tracking.fiu.edu/
http://floridacoastaleverglades.blogspot.com/

Other products

Databases

The FCE Information Management System contains 176 datasets which are archived in the
Environmental Data Initiative’s (EDI) data repository (https://portal.edirepository.org). Datasets are
publicly available on FCE LTER’s website (https://fce-Iter.fiu.edu/data/core/), too. Datasets include
climate, consumer, primary production, water quality, soils, and microbial data as well as other types of
data. A table of FCE LTER datasets in the EDI Data Repository is included in the Appendix of this report.

Participants & Other Collaborating Organizations

Group photo from the 2019 FCE LTER All Scientists Meeting

Participants

Name Most Senior Project Role
Gaiser, Evelyn PD/PI
Heithaus, Michael Co PD/PI
Jaffe, Rudolf Co PD/PI
Kominoski, John Co PD/PI
Price, Rene Co PD/PI
Burgman, Robert Faculty
Castaneda, Edward Faculty
Flower, Hilary Faculty
Fourqurean, James Faculty
Grove, Kevin Faculty
Kiszka, Jeremy Faculty
Malone, Sparkle Faculty
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Name

Martens-Habbena, Willm

Nelson, James
Oehm, Nick

Rehage, Jennifer
Stingl, Ulrich

Trexler, Joel

Troxler, Tiffany
Wdowinski, Shimon
Dessu, Shimelis
Duran, Alain

Laas, Peeter

Liao, Heming
Mercado Molina, Alex
Rezek, Ryan

Santos, Rolando
Van Dam, Bryce
Wakefield, Stephanie
Zeller, Mary
Castellanos, Emily
Rugge, Michael
Bond, Charles
Burgos, Sofia
Chakrabarti, Seemanti
Cordoba, Nicole
Gastrich, Kirk
Stumpf, Sandro
Tobias, Franco
Travieso, Rafael
Viadero, Natasha
Wilson, Sara

Fitz, Carl

Most Senior Project Role
Faculty
Faculty
Faculty
Faculty
Faculty
Faculty
Faculty
Faculty
Postdoctoral
Postdoctoral
Postdoctoral
Postdoctoral
Postdoctoral
Postdoctoral
Postdoctoral
Postdoctoral
Postdoctoral
Postdoctoral
Other Professional
Other Professional
Technician
Technician
Technician
Technician
Technician
Technician
Technician
Technician
Technician
Technician

Staff Scientist (doctoral level)
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Name

Vanderbilt, Kristin
Bernardo, Melissa
Bonnema, Erica
Briggs, Kristin
Castillo, Nicholas
Chavez, Selena
Eggenberger, Cody
Emery, Meredith
Flood, Peter
Garcia, Laura
James, Ryan
Lopes, Christian
Massa, Eric
Massie, Jordan
Ontkos, Alex

Paz, Valeria
Rodemann, Jonathan
Sanchez, Jessica
Shannon, Thomas
Smith, Matt
Stansbury, Kaitlin
Strickland, Nicole
Strickland, Bradley
Sullivan, Kristy
Ugarelli, Kelly
Zhang, Boya
Gonzalez, Jeffrey
Horminga, Samantha
Infante, Maria
Jonas, Ariana

Samara, Yamilla

Most Senior Project Role
Staff Scientist (doctoral level)
Graduate Student
Graduate Student
Graduate Student
Graduate Student
Graduate Student
Graduate Student
Graduate Student
Graduate Student
Graduate Student
Graduate Student
Graduate Student
Graduate Student
Graduate Student
Graduate Student
Graduate Student
Graduate Student
Graduate Student
Graduate Student
Graduate Student
Graduate Student
Graduate Student
Graduate Student
Graduate Student
Graduate Student
Graduate Student
Undergraduate Student
Undergraduate Student
Undergraduate Student
Undergraduate Student

Undergraduate Student
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Name Most Senior Project Role
Schinbeckler, Rachel Undergraduate Student
Sisco, Sarah Undergraduate Student
Contreras, Andreina Research Experience for Undergraduates (REU) Participant

Linenfelser, Joshua Research Experience for Undergraduates (REU) Participant

Partner Organizations

Name

Clark University

College of William & Mary
Dartmouth College

Eckerd College

EcoLandMod, Inc

Encounters in Excellence, Inc.
Everglades Foundation

Everglades National Park

Florida Gulf Coast University
Florida State University

Indiana University

Louisiana State University
Miami-Dade County Public Schools
NASA Goddard Space Flight Center
National Audubon Society - Tavernier Science Center

National Park Service - South Florida/Caribbean Network
Inventory

Sam Houston State University

South Florida Water Management District
The Deering Estate

The Pennsylvania State University
Tulane University

U.S. Geological Survey
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Location

Worcester, Massachusetts
Williamsburg, Virginia
Hanover, New Hampshire
St. Petersburg, Florida
Fort Pierce, Florida

Miami, Florida

Palmetto Bay, Florida
Homestead, Florida

Fort Meyers, Florida
Tallahassee, Florida
Bloomington, Indiana
Baton Rouge, Louisiana
Miami-Dade County, Florida
Greenbelt, Maryland
Tavernier, Florida

Palmetto Bay, Florida

Huntsville, Texas

West Palm Beach, Florida
Miami, Florida

University Park, Pennsylvania
New Orleans, Louisiana

Reston, Virginia



Name

University of Alabama

University of California, Los Angeles
University of Central Florida
University of Florida

University of Hawaii at Manoa
University of Louisiana at Lafayette
University of South Carolina
University of South Florida

University of South Florida St. Petersburg
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Location

Tuscaloosa, Alabama
Los Angeles, California
Orlando, Florida
Gainesville, Florida
Honolulu, Hawaii
Lafayette, Louisiana
Columbia, South Carolina
Tampa, Florida

St. Petersburg, Florida



Impacts
Impact on the development of the principal disciplines

Collaborations within and outside of FCE generate synthesis products, including our contribution to the
Oxford University Press LTER book series: “The Coastal Everglades: The Dynamics of Social-Ecological
Transformations in the South Florida Landscape” (Childers et al. 2019), chapters in other synthesis books
(DeLaune et al. 2013; Entry et al. 2015; Batzer & Boix 2016; Willig & Walker 2016), and cross-site
syntheses of ecosystem development and disturbance theory (Kominoski et al. 2018; Gaiser et al. 2020).
We continue to mobilize cross-LTER site comparisons, including studies of global black carbon
distribution (Khan et al. 2017), sea-level rise vulnerability (Tully et al. 2019), roles of apex predator
movements (Rosenblatt et al. 2013; Boucek & Morley 2019), changes in seagrass carbon stocks
(Christiaen et al. 2014; Arias-Ortiz et al. 2017), global mangrove biogeochemistry and productivity across
geomorphological settings (Twilley et al. 2019; Ribeiro et al. 2019), and drivers of mangrove resilience
(Farfan et al. 2014; Roy Chowdhury et al. 2017). Our international collaborations remain a strong pillar for
synthesis and include comparative works on subtropical wetlands (Gaiser et al. 2015a; Marazzi et al.
2017; Rivera-Monroy et al. 2017), the role of wetlands in the global carbon cycle (Barr et al. 2014), and
global information exchange (Vanderbilt & Gaiser 2017; Vanderbilt et al. 2017). FCE researchers are
active in LTER Network leadership including serving on 7 committees (contributing heavily to Information
Management— see Wheeler et al. 2017).

Impact on other disciplines

The FCE has built on US LTER Network collaborations to expand understanding of social-ecological
resilience to extremes events through the Urban Resilience to Extremes Sustainability Research Network.
By engaging municipal leaders, private industry, and public stakeholders with ecologists, social scientists,
architects, and engineers, we are informing the technological, ecological, and social context for resilient
solutions. The FCE has also engaged journalists in development of media to improve public literacy and
advocacy for resilient adaptation to sea-level rise.

Impact on the development of human resources

FCE is based in Miami at FIU, the nation’s largest majority-minority-serving (64% Hispanic; n = 37,272)
and the fourth largest U.S. university (n = 58,063). FCE excels at serving this community by introducing
students to ecological science and the effects of human activities in the Earth’s biosphere. We focus on
recruitment of underrepresented groups into our research experience programs, resulting in a majority of
FCE undergraduate students identifying as underrepresented groups (49% Hispanic; 4% non-Hispanic
Black, and 65% female). Similarly, a total of 66% of the 179 students and 165 teachers working with FCE
scientists are from underrepresented groups (60% Hispanic).

Impact on physical resources that form infrastructure

The FCE LTER program supports a biophysical research platform at 14 locations in Everglades National
Park used by 88 collaborators, 83 graduate students, and 17 staff from 27 academic institutions and
agencies. The platform includes ISCO autosampling devices and dataloggers (all sites), field laptops,
weather stations, flow meters, water level recorders, acoustic animal tracking devices, five eddy
covariance towers, and associated solar power, power storage, and data retrieval/storage systems. The
FCE LTER program has also enabled access to Everglades National Park resources, including the
mesocosm facility used for outdoor salinity, inundation and phosphorus addition experiments. The
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program also enables data storage on three virtual Linux servers, three virtual Windows servers, and two
desktop workstations.

Impact on institutional resources that form infrastructure

The FCE LTER leverages 57 additional projects funded by other sources, with a ratio of total leverage to
NSF base funding of 7:1. More than 95% of our leveraged funding comes from NSF-funded projects, the
U.S. Department of Interior (National Park Service), the U.S. Army Corps of Engineers, the South Florida
Water Management District, the National Aeronautics and Space Administration, the U.S. Department of
Agriculture, the U.S. Environmental Protection Agency, the National Oceanic and Atmospheric
Administration, and Florida Sea Grant. Some of these projects support additional research at FCE LTER
sites while others help us contextualize our findings spatially at additional sites we call ‘satellite sites.’

Impact on information resources that form infrastructure

The mission of the FCE LTER Information Management System (FCE IMS) is to provide easily
accessible, high quality, well-documented datasets to support research, outreach, and education at the
FCE LTER and in the broader community. FCE currently has 176 datasets archived in the Environmental
Data Initiative’s (EDI) data repository, forty-four of which are ongoing and contain ten or more years of
data. During FCEIV, the FCE IM Team (Kristin Vanderbilt, Information Manager (IM); Mike Rugge,
Program Manager & GIS/Programming Specialist) updated these datasets, responded to changing LTER
Network recommendations and scientist needs, and made improvements to the FCE IMS to facilitate
efficient management and discovery of FCE LTER information products.

FCE IMS Responds to New LTER Network Recommendations and Researcher Needs

FCE continues to update existing long-term data sets within two years of data collection per the LTER
Data Access Policy and NSF Data Sharing Policy. New long-term, experimental, or short-term datasets
supported by the FCE grant are archived in the same timely fashion. Dataset contributors include FCE
scientists, government or NGO researchers, and graduate students. Most FCE datasets are publicly
accessible as soon as they are archived, and as of 2018 these datasets are released under the CC-BY
2.0 license as recommended by the LTER Executive Committee. The main exception to this policy
regards graduate student data, which can be embargoed for up to five years while the student has
exclusive use of the data.

A core LTER IM activity is generating Ecological Metadata Language (EML) to submit with data to the
Environmental Data Initiative repository. During FCEIV, a second method for generating Ecological
Metadata Language (EML) was adopted at FCE to address new needs. Researchers have traditionally
submitted metadata to the IM using a Microsoft Excel template which is then converted into EML 2.1
using a perl program (XLSX2EML.pl) maintained by M. Rugge. This approach works well for datasets with
a single data table, but it cannot accommodate data packages that include multiple entities (such as a
series of related data tables, data processing code, or protocols). Such data packages are becoming
more common as scientists embrace principles of open science and reproducibility. To satisfy
researchers with multi-entity data packages to archive, FCE has adopted the EMLAssemblyline R
package written by EDI (Smith 2020). The EMLAssemblyline is an R package developed by EDI for
generating EML that is itself based on the R EML package (Boettiger & Jones 2020). Both methods,
FCE’s MS Excel template and EMLAssemblyline, produce EML 2.1 that complies with the EML Best
Practices Recommendations (EDI 2017). Both will also soon be updated to yield EML 2.2.

Making FCE Information Products Easier to Find and Manage

New FCE Website: FCE LTER met a major IM milestone described in the 2018 proposal when a new
FCE website was launched in late 2019. The old FCE website was hand-coded and laborious to maintain.
The new website takes advantage of Cascade, the content management system used by FIU, to make
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website updates easier. While the Project Manager did most website updates himself on the old website,
migrating the website into Cascade enables other FCE staff to have permissions to sections of the
website in order to update their own content. The information on the new website has been refreshed and
reorganized for ease of navigation with input from Pls, staff, and students. Cascade facilitates integration
with social media, newsfeeds, and offers website search functionality. The new website significantly
improves on the old one by being mobile device friendly and resolving to a size appropriate to the device
on which it is being viewed.

Unfortunately, Cascade does not support dynamic web pages, such as the popular custom query
interfaces to data, bibliography, and personnel databases found on the old FCE website. M. Rugge
therefore used the Foundation Framework, a responsive front-end software framework for web design, to
produce a template mimicking the Cascade FCE website. He re-wrote all the query scripts on the old
website in PHP in order to replace near-obsolete Embperl scripts. He preserved the many options from
the old website for filtering datasets, publications, personnel and photographs for ease of discovery, while
offering the new look and feel of the Cascade website. The dynamic part of the FCE website is served via
an Apache webserver that is managed by the Project Manager on a Linux virtual machine, while the
Cascade part of the website is served by FIU Communications. This new, hybrid FCE website has
improved the experience of web visitors seeking data or information about the FCE LTER. As an added
bonus, the website also has the look and feel of other websites managed by FIU’s College of Arts and
Sciences (CASE).

New FCE Data Catalog: FCE has updated its approach to generating and querying the FCE website’s
Data Catalog. The new method takes advantage of RESTful web services provided by EDI's PASTA+
data repository software. Previously, the FCE IM had submitted EML documents to the EDI Data
Repository and then captured a subset of that metadata in a local Oracle database to drive the FCE Data
Catalog. Maintaining two copies of the metadata, one in the EDI repository and the other local, was
inefficient. With the new system, the IM submits EML to the EDI Data Repository as before, but then the
EDI Repository becomes the source of metadata to populate the FCE Data Catalog. Further, PASTA+'s
Solr repository can be queried from the FCE website to discover FCE datasets based on metadata stored
in keywords, author, and title EML fields. This new approach for generating and querying the FCE Data
Catalog expedites updates of FCE datasets.

The new FCE Data Catalog improves over the old catalog because EDI’s web services allow the retrieval
and display of the DOI associated with each dataset citation on the new FCE website. Having complete
dataset citations on the FCE website will make it easier for FCE scientists to cite the datasets they use.
As more FCE scientists include dataset citations in the papers they author, the better FCE LTER will be
able to track data usage in the future.

Impact on technology transfer

The FCE LTER Information Management System (IMS) provides publicly accessible data not only for this
project but also for the additional 57 leveraged projects, either through the Environmental Data Initiative
or through our “Related Data” link on our FCE data portal. The FCE IMS team trains researchers and
students, as they design and conduct their research projects, about data collection, documentation and
organization best practices. The information manager presentations to the FCE LTER Graduate Student
Association so that the students understand how to submit data and metadata, as well as their obligation
to do so. The information manager is also available to provide input on data management plans for any
proposal written by FCE researchers. Recently, she co-organized sessions at the 2018 LTER All Scientist
Meeting and 2019 International LTER (ILTER) Open Science Meeting that included invited ontology
experts and discussion of future semantic developments for the US LTER. Long involved with the ILTER
Network, she was co-editor of an Ecosphere special issue about the ILTER (Vanderbilt & Gaiser 2017)
and has contributed to ILTER research (Dick et al. 2018). She has also co-authored several publications
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on information management (Gries et al. 2018, Vanderbilt & Blankman 2017, Vanderbilt et al. 2017,
Wheeler et al. 2017). She is presently the Associate Editor for Data Science for the journal Ecological
Informatics. In her role with EDI, she trains new LTER IMs and is the liaison between EDI and the
Information Management Executive Committee. FCE Project Manager M. Rugge has developed tools
that others in the LTER Network and at EDI have used. He created an XSLT stylesheet that renders EML
metadata in a human readable format. It is used on the FCE website and EDI has implemented it in the
EDI Data Portal. He wrote the FCE'’s Perl XLXS2EML program for generating EML metadata from an MS
Excel metadata template. He updates this program when necessary to comply with new EML versions
and recommendations. This tool is openly available on the FCE website and via the LTER Network’s
github repository.

Impact on society beyond science and technology

FCE is dedicated to the continued co-production of knowledge as a direct conduit of FCE findings to
resource managers, decision-makers, and other stakeholders (Gaiser et al. 2019). In collaboration with
the Everglades Foundation, we have provided over 138 briefings and 72 tours to local, state, national and
international lawmakers, non-governmental organizations, and community partners. FCE scientists have
testified to the U.S. House of Representatives and the European Union Parliament, counseled the
Intergovernmental Panel on Climate Change and the National Academy of Science Independent Review
of Everglades Research, and discussed the relevance of findings to resource decisions with former
President Barack Obama, former Senator Robert Graham, the Florida Congressional Delegation and their
staffs, and former White House Science Advisor Dr. John Holdren. We also engage with decision makers
to translate science into restoration policy (i.e., Wetzel et al. 2017).
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Appendix: List of FCE LTER Data Sets

The FCE LTER program has contributed 176 datasets to the EDI Data Repository. The Citation
column contains dataset title, publication date, creators, and Digital Object Identifier (DOI). Temporal
coverage of the dataset and relevant LTER Core Research Areas (PP = primary production, PS =
population dynamics and trophic structure, OM = organic matter accumulation or utilization, IM =
inorganic inputs and movements of nutrients through the ecosystem, DP = patterns and frequency of
disturbances, LU = land use and land cover change, HE = human-environment interactions) are also
shown.
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Citation Coverage Areas
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August 2003 in Everglades National Park (FCE), South Florida, USA 2003-08-04

ver 2. Environmental Data Initiative.

https://doi.org/10.6073/pasta/da883a9edecd3c2a2be661531b16a780.

Jaffe, R. 2013. Characterization of dissloved organic nitrogen in an
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