FCE ASM 2013

SCENARIOS AND MODELING CCT

JESSE BLANCHARD, MICHAEL BUSH, DANIEL CHILDERS, VIC ENGEL, EUNICE YACOBA ESHUN, CARL FITZ, EVELYN Gaiser, STEFAN GERBER, DANIEL GOMEZ, HILARY FLOWER, LAUREL LARSEN, SYLVIA LEE, STEPHANIE LONG, CHRISTOPHER MaddEN, NOOSHA MAHMOUDI, GREG NOE, DANIELLE OGURCAK, JEFF ONSTED, STACY ORTEGO, REJENDRA PAUDEL, SHIVA POKHAREL, MARK RAINS, ROSANNA RIVERO, AMARTYA SAHA, COLIN SAUNDERS, FRED SKLAR, JENNIFER SWEATMAN, JOEL TREXLER, TIFFANY TROXLER, ROBERT TWILLEY, VIVIANA VILLAMIZAR, ANNA WACHNICKA
CENTRAL QUESTIONS
OVERVIEW: WHERE WE ARE

- Scenarios (climate change, water use)
 - Engaging with stakeholders in common scenarios development

- Modeling and synthesis
 - Bits and pieces approach (various)
 - All at once approach (ELM)

- Synthesis paper
SCENARIOS

• Plausible outcomes, not projections
 – Focus on a manageable number of plausible but different outcomes
 – Better understand relationships between drivers and response variables
• Loosely linked (bottom up, opportunistic)
• Common storylines enhance likelihood of opportunistic integration and synthesis
A LOT OF RESOURCES...

Past and Projected Trends in Climate and Sea Level for South Florida

Validating climate models for computing evapotranspiration in hydrologic studies: how relevant are climate model simulations over Florida?

Jayantha Obeysekera

Scenario-Based Projection of Extreme Sea Levels

The Atlantic multidecadal oscillation and its relation to Probabilistic Projection of Mean Sea Level and Coastal Extremes

Jayantha Obeysekera, P.E., M.ASCE; Joseph Park, P.E.; Michelle Irizarry-Ortiz, P.E.; Jenifer Barnes; Paul Trimble

Modified with permission from J. Obeysekera
A LOT OF RESOURCES…

• Teams
 – Florida Climate Change Task Force
 – Water, Sustainability, and Climate for South Florida
 – Tampa Bay ULTRA

• Workshops/Meetings
 – Hydrology of the Everglades in the Context of Climate Change (FAU, March 2012)
 – Predicting Ecological Changes in the Florida Everglades in a Future Climate Scenario (FAU, February 2013)
 – National Climate Assessment Southeast Regional Town Hall Meeting (USF, February 2013)
Problem: Poor resolution—south Florida not even modeled in some GCMs!!!
Downscaling to Date (2060)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Global Models</th>
<th>Statistically Downscaled Data</th>
<th>Dynamically Downscaled Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Temperature</td>
<td>1 to 1.5°C</td>
<td>1 to 2°C</td>
<td>1.8 to 2.1°C</td>
</tr>
<tr>
<td>Precipitation</td>
<td>-10% to +10%</td>
<td>-5% to +5%</td>
<td>-3 to 2 inches</td>
</tr>
<tr>
<td>Sea Level Rise</td>
<td>1.5 feet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modified with permission from J. Obeysekera
Florida Coastal Everglades
Long Term Ecological Research

Modified with permission from J. Obeysekera
Water Budget Modeling

Shark Slough

Taylor Slough
Hydrodynamic Modeling

- When run for “typical” time period, groundwater discharge is 14 mm/mo.
- Mean annual groundwater discharge from Zapata and Price (2012) is 15 mm/mo.
P Budget Modeling

(a) Dry season: Jan – mid-June 2002, (mg m$^{-2}$ y$^{-1}$)

(b) Wet season: mid-June – December 2002 (mg m$^{-2}$ y$^{-1}$)
ELM Habitat Suitability Scenario
Both Scenarios

Habitat Classes, at Simulation-End
- Open Water/Slough
- Mangrove Forest
- Buttonwood Forest
- Mangrove Scrub
- Buttonwood Scrub

Red polygons are 1995 mangrove habitats

Base

SL_0.5

SL_0.5_FL1.5x
SYNTHESIS PAPER

• Synthesis Science in the Florida Coastal Everglades: Understanding Ecosystem Responses to Presses and Pulses in a Social Ecological System

• Core group
 – Onsted, Rains, Fitz, Saunders, Madden

• Working Meetings
 – October 2012
 – February 2013

• Progress!
PRODUCTS TO DATE

Provide a list of products your group has generated relevant to the listed questions, including theses, manuscripts, presentations and leveraged proposals

Highlight those from the past year
BREAKOUT GROUP AGENDA

• Scenarios
 – Seek interest in scenarios development
 – Plan workshop (what, when, where)
 – Is there a Childers (2006) for climate-change and water-use scenarios?

• Modeling
 – Connecting existing and/or planned data collection and modeling efforts
 – Begin prioritizing investments (time, money)